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Abstract 
 

Fatal traffic crashes have increased significantly, largely due to human error, which 

automated vehicle technology aims to reduce. However, challenges such as driver fatigue and the 

need for quick intervention in case of system failures must be urgently addressed to ensure safety. 

This study aims to develop a driver fatigue monitoring system to detect different driver fatigue 

levels during prolonged automated driving. The proposed fatigue monitoring system integrates 

deep learning, computer vision, and machine learning techniques, leveraging postural and 

behavioral data. A driving simulator experiment was conducted to collect data on eye aspect ratio 

(EAR), mouth opening ratio (MOR), percentage of eye closure (PERCLOS), and driver postural 

information. Computer vision techniques were utilized to extract these features from visual data 

automatically. The study's key finding is that postural data is the most critical factor in detecting 

driver fatigue. Among the evaluated machine learning algorithms, the random forest algorithm 

demonstrated the best performance, achieving an accuracy of 0.97 in detecting driver fatigue. 

Combining postural data with physical measures such as EAR, MOR, and PERCLOS proved 

highly effective in accurately identifying driver fatigue levels. This integrated approach offers a 

promising solution for enhancing the safety and reliability of automated driving systems by 

effectively monitoring and addressing driver fatigue.  

 
  



 
 

 

3 
 

Chapter I: Introduction 
Fatal traffic crashes have risen significantly over the last several years. According to the 

National Center for Statistics and Analysis (NCSA), there were about 6.1 million traffic crashes 

reported by the police in the United States during the year 2021. These accidents resulted in 

approximately 42,939 deaths and around 2.5 million injuries (NCSA, 2023). Compared to 2020, 

these statistics show a 10% rise in fatalities and a 9.4% increase in injuries (NCSA, 2023). 

Literature and research consistently demonstrate that human error is the primary cause of traffic 

crashes (Zipper, 2021; Smith, 2013). The National Highway Traffic Safety Administration 

(NHTSA) believes that vehicle automation technology, which will gradually remove human 

drivers from vehicle control, will significantly improve roadway safety (NHTSA, 2018).  

In this context, the world is witnessing an unprecedented rise in automated vehicle 

technology. With human error responsible for nine out of ten severe traffic crashes, automated 

vehicle technologies offer the potential to save thousands of lives, alleviate congestion, enhance 

mobility, and improve productivity (NHTSA, 2017). However, it is imperative to acknowledge the 

potential unintended challenges associated with this innovation before its widespread adoption. 

Despite advancements, automated vehicle technology still faces hurdles in efficiently navigating 

all possible driving situations, making swift driver intervention necessary in case of system failures 

(DiMatteo et al., 2020). Currently, in the United States, users can drive under SAE Level 2; 

however, advancements to SAE Level 3 would improve safety, economy, and society (NHTSA, 

2017; NHTSA, 2018). Society of Automotive Engineers (SAE) defines SAE Level 3 or 

Conditional Driving Automation (CAD) as a vehicle driving itself, while the driver, who can 

detach himself or herself from driving tasks, must remain available to take over and respond 

effectively to any situation (NHTSA, 2017; NHTSA, 2018). Because SAE Level 3 requires 
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minimal driver interaction with the system, it is necessary to ensure drivers are not fatigued and 

have a robust and reliable system that can alert drivers when the vehicle requires the driver to take 

control.  

Driving is a complex task that requires continuous attention and monitoring (situational 

awareness). Prolonged and monotonous monitoring of automated driving of SAE level 3 frees 

drivers from the driving task to a great extent and may cause boredom, daydreaming, and 

drowsiness among drivers, potentially inducing fatigue and compromising their readiness to take 

control of the vehicle when required. Vehicle automation-based driver fatigue can be both active 

and passive. Active fatigue is associated with a high cognitive workload. In contrast, passive 

fatigue develops when there is a requirement for “system monitoring with either rare or even no 

overt perceptual-motor requirements” (Desmond & Hancock, 2001, p. 601). This research focuses 

on passive drive fatigue and addresses a critical safety need since collisions involving partially 

automated vehicles show that responsible human-in-vehicle may become inattentive or drowsy 

(DiMatteo et al., 2020), enough to significantly delay the takeover or not be able to take over if 

the driving situation demands it.  

In 2021, 8.2% of all fatal traffic crashes involved distracted or inattentive drivers, which is 

a 12% increase from 2020 crashes (NHTSA, 2023). Additionally, fatalities from drowsy driving 

accounted for 1.6% of total fatalities, showing an 8.2% increase from the previous year (NHTSA, 

2023). Such incidents are more severe than other vehicular crashes as a fatigued driver tends not 

to perform evasive and preventive measures due to depleted levels of cognition to avoid the crash. 

Studies have shown that driver fatigue degrades aspects of cognitive functions, including 

perception, attention, and reaction time (Depestele et al., 2020; Fonseca et al., 2018). The 

American Automobile Association (AAA) Foundation for Traffic Safety has conducted a study 
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and revealed that each year there are about 328,000 drowsy driving-related crashes (National 

Safety Council, 2019). Of these incidents, approximately 6,400 crashes are fatal, and 109,000 

crashes result in injuries. The researchers indicated that the occurrence of drowsy driving fatalities 

can be more than 350% greater than reported. Therefore, it is crucial and imperative to focus on 

fatigued driving-related research and ensure that automated driving for prolonged hours would not 

deteriorate traffic safety.  

This research proposed and researched a driver monitoring system that employs two high-

definition webcams to detect and record various driver features such as eye-aspect ratio (EAR), 

mouth-opening ratio (MOR), head position, hand-to-steering wheel distance, and driver posture 

data. Understanding these features and their correlation to driver fatigue allows us to predict a 

driver's fatigue level and send warning signals to alert the driver accordingly.  

This report includes two different studies described in the following two chapters. Chapter 

Two describes fatigue-related research and driving simulator study to explore the correlation of 

different driver features with fatigue. Chapter Three describes the driving simulator study 

conducted to identify the most promising warning modality to alert drivers. Chapter Four presents 

the conclusions and recommendations for future research. 
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Chapter II: Classification of Driver Fatigue for Prolonged 
Automated Driving 

 
This chapter presents a summary of the literature review on the safety impacts of driver 

fatigue, existing technologies in vehicles, methods for fatigue detection, and the driving simulator 

study conducted to investigate the correlation between driver features like mouth aspect ratio 

(MAR), eye aspect ratio (EAR), and postural data of the driver (head-to-headrest distance and 

hand-to-steering wheel distance) and fatigue.  

LITERATURE REVIEW 
 

The literature review section discusses existing research on driver fatigue detection, 

focusing on integrating behavioral and postural data using computer vision. A systematic literature 

search was conducted using the databases IEEE Xplore, Web of Science, ACM Digital Library, 

and Science Direct, employing keywords: “driver fatigue detection,” “factors,” “computer vision,” 

“deep learning,” and "machine learning." Boolean operators “AND” and “OR” have been applied 

during the literature search process as per requirements. Key factors considered in previous works 

include applying various postural and behavioral features and the efficacy of computer vision 

techniques. Additionally, the review examines various machine learning and deep learning models 

applied in these studies, highlighting their performance and limitations. 

Features Considered in Fatigue Detection Models 
Recently, researchers have explored various physiological, postural, and behavioral 

features for developing driver fatigue detection models because of the convenience of extracting 

these complex data. Physiological features have widely been used for detecting driver fatigue, 

leveraging signals like Electroencephalography (EEG) and Electrocardiography (ECG). For 

instance, Huang et al. (2018) grouped features into physiological measures, including EEG, ECG, 
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and electrooculogram (EOG), offering a comprehensive approach to detecting fatigue during 

driving. However, these methods often require intrusive equipment, potentially causing discomfort 

in drivers. Similarly, Gwak et al. (2018) and Wang et al. (2018) focused on EEG signals, which, 

while accurate, are complex to interpret and implement in real-world applications. The 

physiological approach, though effective, faces practical challenges in terms of user-friendliness 

and integration of equipment and sensors into everyday driving environments. 

On the other hand, postural features, including head and body movements, provide non-

intrusive indicators of fatigue. Therefore, several researchers have considered postural data to 

develop the fatigue detection model. While postural data is promising, ensuring accuracy and 

minimizing false alarms are still challenging. Savaş & Becerikli (2018) included head movement 

detection in their studies. However, the individual differences in natural head movements have not 

been considered, which could result in false positives. Wijaya et al. (2022) also considered nodding 

and head movements using a comprehensive dataset. Similarly, it remains unclear whether their 

findings apply to diverse populations. Anber et al. (2022) classified head positions into specific 

categories, providing a thorough analysis. This can help to cover the variability of head positions 

in populations. In another study, Mahmoodi & Nahvi (2019) used surface electromyography for 

postural data. Nevertheless, the practicality of considering this feature in real-world settings is 

questionable due to the need for muscle sensors.  

Facial features, such as eye and mouth movements, have become prominent in fatigue 

detection research. Studies by Savaş & Becerikli (2018) measured eye closure duration and 

yawning frequency with other features to model the driver fatigue detection system. Gu et al. 

(2018) and Zhao et al. (2018) also considered the eye and mouth states for similar types of research. 

However, these features can be influenced by various environmental conditions and individual 
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differences in facial expressions. The inclusion of slow blink rates and yawning in the National 

Tsing Hua University dataset by Wijaya et al. (2022) has added robustness to the model 

development. In this study, the drivers were asked to drive in the morning and at night, considering 

the environmental conditions. Facial features are intuitive and less intrusive, yet their effectiveness 

heavily depends on the reliability of the underlying image-processing algorithms. 

Computer Vision Techniques in Fatigue Detection 
Since the driver fatigue detection model is effectiveness depends on the reliability of image 

processing, the application of computer vision for data extraction has gained significant attention 

from researchers. Numerous studies have employed a variety of methodologies to monitor facial 

expressions and behaviors indicative of fatigue (Sikander and Anwar, 2018). Various computer 

vision techniques have used experimental setups, such as real and simulated driving environments. 

Despite the inherent challenges, researchers have aimed to capture realistic data in real driving 

environments. Du et al. (2022) and Huang et al. (2018) utilized camera setups to monitor facial 

expressions in actual driving conditions, including subjects wearing and not wearing glasses and 

using mobile phones. These studies provide valuable insights but face challenges, such as varying 

lighting conditions and the need to maintain driver comfort and safety. Zhao et al. (2018) and 

Fatima et al. (2020) emphasized non-intrusive camera placements to minimize driver distraction 

while capturing facial expressions. While these real-world studies are crucial for validating the 

effectiveness of fatigue detection methods, developing universally applicable systems is 

challenging because of the variability in environmental conditions, the inability to investigate all 

types of traffic conditions, and individual driver behaviors. 

Simulated driving environments offer a controlled setting for data collection, allowing 

researchers to systematically study driver fatigue without the risks associated with real-world 

driving. Savaş & Becerikli (2018) employed facial expression detection software to monitor eye 
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closure and yawning frequency in driving simulators. Similarly, Wijaya et al. (2018) and Guo et 

al. (2019) used infrared cameras to capture high-resolution facial expressions even in low-light 

conditions. Studies by Gwak et al. (2018) and de Naurois et al. (2018) utilized driving simulators 

with various environmental settings to create a realistic driving experience. While simulated 

environments offer many benefits, the controlled nature of these simulations may not fully 

replicate the complexities and unpredictability of real-world driving. Therefore, Ji et al. (2019) 

and Rajkar et al. (2022), in their CEW and Yawn DD datasets, used data from real-world driving, 

video samples, and simulation-based driving to enhance the robustness of detection algorithms. 

Machine Learning and Deep Learning Algorithms for Fatigue Detection 
Machine Learning (ML) and Deep Learning (DL) based implementations for fatigue 

classification are data-intensive and use advanced modeling techniques like Neural Networks 

(NN), Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), Support Vector 

Machines (SVM), and the ensemble methods such as Random Forest (RF), Decision Tree (DT) 

and Gradient Boosted Regression Tree (GBRT). For the past two decades, the applications of 

various ML and DL algorithms have significantly contributed to driver fatigue detection systems. 

Savaş and Becerikli (2018) utilized SVM with OpenCV and Dlib libraries, achieving a notable 

97.93% accuracy in detecting driver fatigue by analyzing features like eye closure percentage, 

yawning frequency, and head detection. This study highlighted the effectiveness of SVM in 

handling detection models, demonstrating its potential for real-time applications. Similarly, Gwak 

et al. (2018) explored multiple ML algorithms, including logistic regression, SVM, k-nearest 

neighbor (KNN), and RF, with RF achieving the highest accuracy of 81.4%. Zandi et al. (2019) 

employed both RF and non-linear SVM for the binary classification of vigilance states, with RF 

achieving accuracy rates between 88.37% and 91.18%, outperforming SVM. Wang et al. (2018) 

compared multiple models, including KNN, SVM, GBRT, and DT, with the GBDT achieving the 



 
 

 

10 
 

highest accuracy of 94.3%. These ML models demonstrate the potential of non-intrusive, behavior-

based fatigue detection systems. However, despite their promising results, ML models often face 

limitations in handling complex and high-dimensional data, hindering their robustness and 

adaptability in real-world scenarios. ML models typically rely on manually generated features, 

which may not fully capture the intricate patterns associated with driver fatigue, leading to 

potential inaccuracies in diverse driving conditions. 

In many cases, DL algorithms have shown exceptional performance in feature extraction 

for driver fatigue detection due to their ability to learn complex features from large datasets. Gu et 

al. (2018) developed a CNN model with multi-scale pooling (MSP-Net), achieving high accuracies 

of 98.05% and 98.85% on different datasets, demonstrating the model's ability to generalize across 

various conditions. Similarly, Huang et al. (2018) introduced the P-Fatigue Detection 

Convolutional Network (P-FDCN), which demonstrated robust eye state recognition with 

accuracies of 94.9% and 95.1%. Wijaya et al. (2022) developed a CNN-based model that achieved 

an accuracy of 70% for validation and 56% for testing, indicating areas for improvement in 

robustness and accuracy. Another significant contribution is by Xiao et al. (2019), who proposed 

a convolutional recurrent network architecture combining CNN and Long Short-Term Memory 

(LSTM) units, achieving a 95.83% accuracy by learning spatial representations and temporal 

dynamics of eye features. Ji et al. (2019) introduced a Mouth State Recognition Network, 

achieving 98.42% detection accuracy on a public eye dataset and 97.93% on an open mouth 

dataset. Zhao et al. (2018) proposed a framework using facial dynamic fusion information and a 

deep belief network (DBN), achieving 96.7% accuracy. These DL models, particularly CNNs, 

effectively captured spatial features from facial images, making them highly suitable for real-time 

fatigue detection applications. However, the black-box nature of DL models can pose challenges 
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in understanding and interpreting their decision-making processes, which is crucial for ensuring 

the reliability and safety of fatigue detection systems. 

Hybrid models combining multiple ML and DL techniques have also been explored to 

enhance detection accuracy and robustness. Guo et al. (2019) introduced a hybrid approach using 

convolutional neural networks and long short-term memory (LSTM) algorithms, achieving an 

average accuracy of 84.85%. This hybrid approach used CNNs for spatial feature extraction and 

LSTMs for temporal sequence learning, effectively capturing both spatial and temporal aspects of 

driver behavior. Another hybrid model by Gao et al. (2019) proposed an EEG-based spatial-

temporal convolutional neural network (ESTCNN), which integrated temporal information 

processing with dense layers to fuse spatial features, resulting in a 97.37% accuracy. Rajkar et al. 

(2022) utilized CNN models with OpenCV's Haar cascade algorithm, achieving 96% accuracy in 

real-time detection. The study by Hu and Min (2018) employed an ensemble learning method 

using gradient-boosting decision trees (GBDT), achieving a 94.0% recognition rate with EEG 

signals. These hybrid approaches demonstrate the potential to overcome the limitations of 

standalone ML or DL models by combining their strengths.  

Several innovative models have been proposed to address the challenges of real-time driver 

fatigue detection, focusing on novel architectures and feature extraction methods. Képešiová et al. 

(2020) utilized a two-stage approach combining artificial ANNs and CNNs, achieving 98.02% 

validation accuracy. This method demonstrated the potential of staged processing to refine feature 

extraction and improve detection accuracy. A more recent study by Sun et al. (2023) introduced a 

three-stream FFF-CNN model for robust fatigue detection on low-quality inputs, achieving 

98.35% accuracy. This model employed a global face stream and two local eye streams, 

incorporating feature fusion modules to enhance stability and reduce noise. Anber et al. (2022) 
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proposed a non-invasive approach using AlexNet CNN, achieving an impressive 99.65% accuracy 

by combining features from head position and mouth movements. Furthermore, You et al. (2019) 

introduced a deep cascaded convolutional neural network (DCCNN) with an eye assessment 

parameter (EAR), achieving a 94.8% accuracy. Fatima et al. (2020) used SVM and Adaboost for 

eye-state classification, achieving 96.5% and 95.4% accuracy, respectively. Deng and Wu (2019) 

proposed the MCNN-KCF and multitask convolutional neural networks (MTCNN), achieving an 

average of 92% accuracy. The study by He et al. (2020) introduced a two-stage convolutional 

neural network, achieving 93.83% classification accuracy and 94.7% on Raspberry Pi 4. Table 1 

represents a summary of some previous significant works on driver fatigue detection systems. 

These models highlight the continuous advancements in fatigue detection technologies, aiming for 

higher accuracy, robustness, and practical applicability in real-world scenarios. However, despite 

their high accuracy, these models often require extensive pre-processing and may struggle with 

varying lighting conditions and occlusions, impacting their real-world effectiveness.  

Research Gaps 
Despite significant advancements in driver fatigue detection using ML and DL models, 

several research gaps still need to be addressed. One major gap is the generalizability of these 

models across diverse driving environments and conditions. Factors such as varying lighting 

conditions, different vehicle types, and diverse driver demographics can significantly impact the 

accuracy and reliability of fatigue detection systems. Another notable research gap is integrating 

multimodal data and developing comprehensive systems that combine behavioral and postural 

information. While individual models using PERCLOS, EAR, MAR, and postural data have 

shown promise, their standalone applications may not provide a holistic view of the driver's state. 

Therefore, current research has considered integrating behavioral and postural features under 

varying driving conditions to develop the driver fatigue detection system. 
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Table 1: Features and accuracy in driver fatigue detection and classification models 

Research Group Type of Model Features Used Accuracy 
Deng et al. (2019) CNN Duration of blinking, Duration of eye 

closure, and yawning 
92% 

Hu et al. (2018) Gradient boosting 
decision tree model 

Single Channel EEG signals 94% 

Gu et al. (2018) Hierarchical CNN PERCLOS, FOM 98.02% 
(Precision) 

Alparslan et al. 
(2020) 

CNN Eye-closedness 94% 

Li et al. (2017) RNN Entropy in steering wheel angle 83.25% 
Chellapa et al. (2016)  Pulse rate, yawning, body temperature, 

drooping eyelids 
80.55% 

You et al. (2019) DCCNN and SVM EAR 94.80% 
Zhou et al. (2021) XGBoost Average heart rate, Average breathing rate, 

heart rate variability 
0.996 (R2 - 
value) 

Zhang et al. (2017) CNN PERCLOS, blink frequency 91.45% 
Savaş and Becerikli 
(2018) 

SVM PERCLOS, # of yawns, mouth opening, 
count of eye blinking, and head detection 

97.93% 

Li et al. (2021) System input-based 
classification 

The grip on the steering wheel 86.6% 

Lu et al. (2021) XGBoost EMG signals 90% 
Jia et al., (2018) CSI Variations WiFi signals 89.6% 

(Single 
Driver Case) 

Wang et al. (2018) Wearable device Dry EEG signals - 
Boon-Leng et al. (2015) SVM EMG, Galvanic skin response 90% 

(Precision) 
 

METHODS 
 

This study aims to design and evaluate an accurate and robust classification model to detect 

efficient driver fatigue, can be implemented at scale with ease, and is non-intrusive. This research 

study underwent rigorous review and received approval from the Institutional Review Board's 

Ethics Committee at The University of Texas at Arlington.  

Participants  
Twenty licensed drivers, each with at least one year of driving experience, were selected 

as participants. To recruit this diverse group, the research team utilized flyers and targeted emails 

directed at students from the University of Texas at Arlington (UTA). A detailed screening 

questionnaire was employed to evaluate potential participants on several criteria, including their 
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driving behavior, attitudes toward automated technology, and demographic background. The 

exclusion criteria were carefully applied to ensure the integrity of the research data. Individuals 

who used eyeglasses or corrective lenses for driving, those with pacemakers, anyone with less than 

one year of driving experience, or those susceptible to simulation or motion sickness were not 

considered for participation. The selection process prioritized achieving a diverse group in terms 

of gender, age, and ethnicity, aiming to enhance the generalizability of the study's outcomes. 

Apparatus  

 

Figure 1: Settings of the simulator study 

 
The study utilized a three-degree-of-freedom (3DOF) motion-base RDS-1000 single-seat 

sedan driving simulator from Realtime Technologies. The system is also outfitted with SAE level 

3 automated driving capabilities to mimic an actual vehicle’s control experience closely. The 

visual environment for the simulator was projected onto three 65-inch TV screens, each display 

features a resolution of 1920 × 1080 pixels, providing a comprehensive field of view of 205° 

horizontally and 38° vertically. The virtual environments and scenarios were designed using the 

Internet Scene Assembler (ISA), a sophisticated Virtual Reality Modeling Language (VRML) 

authoring tool. Vehicle movements within these environments were managed by SimCreatorDX, 
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ensuring a realistic driving experience. The entire simulator setup was housed in a room designed 

for quietness and controlled lighting conditions to minimize external distractions and influences.  

Advanced vision-based features were analyzed, including PERCLOS (a measure of eyelid 

closure over time), the mouth-opening ratio (MAR), and head position, utilizing the GoPro 

HERO10 camera positioned to face the driver. In addition, the Logitech 720p HD webcam, placed 

behind the driver at an inclined angle and an approximate height of 8 feet, was used to capture 

detailed postural data. This setup facilitated the collection of critical postural information, 

including the distance of the hands from the steering wheel and the distance of the head from the 

headrest, enriching the behavioral analysis of the driving simulation study. The setting of the 

simulator study is shown in Figure 1.  

Driving Scenarios  
During the experiment, participants were exposed to a carefully designed 45-minute-long 

driving scenario that closely replicated the condition of the Interstate-30 highway near Dallas, 

Texas (see Figure 2). The scenario was programmed to maintain simulated vehicles’ speed at 70 

mph, modeling a driving situation with clear lanes ahead and ongoing traffic in the next lane and 

in the opposite direction. Each scenario had a straight four-lane highway with divided traffic lanes, 

having a constant road geometry and lane width. The virtual driving environment was set for 

daytime driving with adequate visibility settings. There were no weather-related disturbances in 

the virtual environment, such as gusty winds, fog, or rain. The settings incorporated various 

highway features, such as multiple exits and entrance ramps, overhead bridges, bridges with 

curvature, and commercial and high-rise buildings, to enrich the driving experience and realism of 

the simulation. In order to avoid simulation sickness in the participants, the entire drive was broken 

into three 15-minute-long sessions with two 5-minute breaks in the middle.   
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Figure 2: Simulated driving scenario 

From the onset of each scenario, participants were instructed to engage the simulator's 

automated driving mode within the first ten seconds. This action activated the vehicle’s automatic 

lane changing and speed control features, providing comprehensive support for lateral and 

longitudinal vehicle maneuvering without manual driver intervention.  

 
Study Protocol 

After the arrival of each participant, their body temperature (safety measure for COVID-

19) and driver’s license were checked to ensure participation eligibility. Then, each participant 

read and signed the consent form. Before performing a 5-minute test drive, participants were asked 

to complete a simulation sickness questionnaire (SSQ, Kennedy et al., 1993) to monitor their well-

being and determine simulation sickness. The scale has 16 items, each of which can be rated from 

0 to 4. In the actual drive, participants engaged in the driving simulation lasting 45 minutes, divided 

into three 15-minute sessions with interposed breaks. During these breaks, participants were asked 

to complete SSQ again to identify any developing sickness for their exposure to the simulation. 

Each time the participants took SSQ, a cumulative score of 5 or more indicated simulation 

sickness, prompting the immediate ending of the participant’s involvement in the experiment. 

However, no participants were withdrawn from the study due to simulation sickness. Figure 3 

shows the flow diagram of the study protocol. During all of these sessions, two researchers were 

present in the lab. One handled the apparatus and data collection process, while the other 



 
 

 

17 
 

communicated with the participants. The participants were compensated $30 for their 

participation. 

 

 
Figure 3: Flow diagram of the study protocol 

  
 
 
 

Data Set Description   
This study investigates the development of a comprehensive system for driver state 

monitoring using visual cues. Although various studies have explored different types of input 

variables for modeling driver fatigue monitoring systems, the current study considered eye-aspect 

ratio (EAR) and mouth-aspect ratio (MAR) as the behavioral input factors, and head-pose 

estimation, head-to-headrest distance, hand-to-steering wheel distance, deviation of head-pose 

estimation as the postural input factors to detect and classify varying levels of driver fatigue. 

During the study, video cameras were used to collect the recording of the input factors.  
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Figure 4: Feature extraction using computer vision 

The EAR, a scalar value representing the ratio of eye width to eye height, can effectively 

predict a driver's eye states, serving as a critical measure for assessing alertness and safety on the 

road. Additionally, Ling et al. (2021) confirmed EAR's efficacy in evaluating a driver's eye state 

with impressive accuracy in complex driving environments. When the eye is open, the value is 

almost constant, but it approaches zero when the eye is closed (Zhu et al., 2022). The MAR is 

another key indicator for determining if a driver is yawning, an important sign of fatigue, by 

measuring the scalar quantity of the mouth's dimensions (Martinez & Huang, 2022). Head-pose 

estimation is used to determine the driver’s gaze direction and can depict the driver's distraction 

and engagement in any non-driving related tasks (NDRTs). This estimation and its deviation can 

be decomposed into three variables viz, yaw (y-axis), pitch (x-axis), and roll (z-axis). Pitch 

indicates the angles when the driver is moving the face in an up-and-down direction. Yaw indicates 

the angle when the driver is turning face left or right, and roll indicates the angle when the face is 

tilting (see Figure 4). Head-to-headrest distance is defined as the Euclidean distance between the 

driver’s head and the headrest. Hand-to-steering wheel distance is defined as the Euclidean 

between the driver’s hand and the steering wheel. The deviation of head-pose estimation is to 

determine if the driver's gaze is focused on the road. The deviation is calculated as the difference 
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between the average value of the head-pose estimation variable during the first 150 frames of the 

experiment and the head-pose estimation for each frame.  

The response variables for the experiment are class labels: 0,1,2,3, depicting the severity 

of the fatigue level experienced by the driver during the experiment. The response values are 

manually assigned for each data point using the results of the Karolinska Sleep Scale (KSS), a 10-

point scale where 1 indicates extreme alertness and 10 represents extreme sleepiness to the point 

of struggling to stay awake. Each researcher assigned an individual rating for each block of video 

data (window labeling). A rating of 1, 2, and 3 on the KSS indicated that the driver was in an alert 

state, and a fatigue class label of 0 was assigned for all the data points. A rating of 4 on the KSS 

implied the driver was rather alert, and a fatigue class label of 1 was assigned, respectively. Ratings 

5,6,7 were given on the KSS if the driver exhibited signs of fatigue, such as yawning or non-

attentive driving postures, and a fatigue class label of 2 was assigned for these KSS ratings. If the 

driver showed signs of severe fatigue, such as frequent yawning, drooping eyes, and visible 

struggle to stay awake, a rating of 8, 9, or 10 was given on the KSS depending upon the severity 

of the fatigue signs and consequently received a fatigue class label of 3. The final class label for 

each data point was calculated using the rule of majority voting. The response variable levels are 

as follows: 0 – Alert, 1- Alert, but showing signs of fatigue, 2- Fatigued, but making attempts to 

stay awake, and 3 – Fatigued, should not drive.   

 

RESULTS 
 
Data Preprocessing and Extraction 

For each run in the experiment, the video data was recorded at a rate of 30 frames per 

second (fps), resulting in 81000 data points for each experimental run. Various deep-learning 
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techniques were implemented on the recorded video data to extract the dependent variable data. 

Dlib, a modern C++ library, was used for image processing. The pre-trained facial landmark 

detector of dlib was used to extract x-y coordinates of 68 key facial landmarks in the facial region. 

The get_frontal_face_detector() function in dlib, which uses a Histogram of Oriented Gradients 

(HOG) alongside a Linear Support Vector Machine classification function, was utilized to detect 

faces in the video data.   

The ‘shape_predictor()’ function in dlib was used to extract key points of facial landmarks. 

This function identified six landmark points for each eye and mouth, using 68 face landmarks. 

These points were consequently used to calculate the EAR and MAR values. This approach had 

the advantage of being computationally inexpensive. Wide range head pose estimation network 

(WHEnet), a novel end-to-end head-pose estimation network that excels in wide range estimation, 

was used to extract and calculate the head-pose estimation data. WHENet uses YOLOv4 to crop 

images of subjects’ heads and compute accurate head pose Euler angles relative to the camera. A 

custom-trained YOLOv7 object detection algorithm was used to extract postural feature data. We 

collected images with bounding box annotations for the markers on the steering wheel, hands, and 

headrest from multiple runs of lab researchers and other participants. YOLOv7 was preferred for 

its fast and efficient object detection performance on edge devices. It is an anchor-based model 

that predicts potential bounding boxes and applies non-maximal suppression to get the best fit. The 

model was fine-tuned on the dataset for 100 epochs, with an input dimension of 640x640 pixels. 

A learning rate of 0.01, a momentum of 0.937, and a weight decay of 0.0005 to optimize the 

learning process, speed up convergence, and prevent overfitting. The model was initialized with 

pre-trained weights from Yolo. The algorithm was applied to segment the hands, two key positions 

on the steering wheel, and the headrest. The Euclidean distances were calculated from these 
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segmented positions' center points and stored in a dictionary with the class and confidence score. 

This method allowed us to collect and organize important feature data systematically.  

Each participant’s video data was divided into multiple blocks of 3-minute length video 

data (windowing). Windowing ensures that analyses are consistent across the participants. Several 

research studies have implemented a machine-learning approach to model similar types of data 

(Lever et al., 2016; Mohsenzadeh et al., 2020). The collected data was thoroughly examined for 

duplicates and missing values. Python and R programming languages were utilized to conduct the 

analysis. Several instances of duplicate data values were found. This can be attributed to the fact 

that the video data is collected at a rate of 30 frames per second (FPS), translating to 30 data points 

for each feature vector per second. Since the driver's position might remain constant for a few 

seconds, duplicate values are generated. The duplicate values were identified and removed, 

ensuring the data entries' uniqueness for subsequent analysis stages. The preprocessing analysis 

also revealed that the collected data had severe class imbalances, where certain class levels were 

significantly under-represented in the data. The performance of standard classification algorithms 

is often poor when learning from imbalanced data (Li et al., 2013). The class imbalance can 

potentially induce bias in the statistical analysis of the data, necessitating the consideration of 

resampling strategies. There is abundant literature discussing various techniques to tackle the issue 

of class imbalance. The current study implemented the random under-sampling (RUS) algorithm 

to tackle this issue. The random under-sampling algorithm was chosen over other oversampling 

techniques as it would decrease the overall size of the training dataset and would be 

computationally beneficial. However, the RUS algorithm has the obvious disadvantage of 

throwing out points from the dataset, which could contain useful information.  
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However, the huge amounts of data collected in this study allowed us to have a sufficiently 

sized dataset after implementing the RUS algorithm, with each class having around 40,000 

instances, providing us with enough data for the statistical model to learn. The data was also 

shuffled after implementing the RUS algorithm to randomize the data well to mitigate any potential 

sequential order effects and to avoid any unwanted bias and dependencies in the statistical learning 

models. Figure 5 highlights the stark class imbalance before implementing the RUS algorithm. 

 

Figure 5: Class distribution 

Algorithm Classification Performance 
The data was randomly split into training (70%) and testing (30%) sets. A 10-fold cross-

validation approach was also employed as a control to prevent the models from over-fitting the 

training dataset (Abbas & Alsheddy, 2020). This method enhances the reliability of our findings. 

Several classification algorithms were compared, such as Decision Trees, Random Forest, Support 

Vector Machines, Naïve Bayes Classifier, and k-nearest Neighbors. Hyper-parameter tuning for 

suitable models was also employed to achieve the maximum possible accuracy for each algorithm. 

The algorithms were compared across their accuracy and confusion matrices for their predictions 

on the testing data set. Figure 6 illustrates the accuracy of the comparison of the various machine-

learning approaches. The random forest classification algorithm outperformed the other 
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classification algorithms and had an overall accuracy of 0.97. The worst-performing algorithm was 

the Naïve Bayes classifier, with an overall accuracy rate of 0.474. Variable importance calculations 

were performed post-algorithm analysis to extract additional insights from the best-performing 

algorithm. 

 

Figure 6: Accuracy comparison of classification algorithms 

Although the Support Vector Machine (SVM) and Random Forest (RF) algorithms 

demonstrated similar accuracies, we chose Random Forest for this study due to its lower 

computational demands. Non-linear SVMs are known to be computationally intensive and less 

practical for larger datasets. In contrast, Random Forest offers a more efficient and scalable 

solution, making them more suitable for our analysis (Alshaqaqi et al., 2013). Table 2 presents the 

hyper-parameter optimization values for various algorithms used in the study. For the Random 

Forest algorithm, the number of trees and the number of variables randomly sampled as candidates 

at each split (mtry) were optimized. Similarly, for the Support Vector Machine (SVM), the kernel 
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type, regularization parameter (C), and gamma values were fine-tuned. These optimizations were 

critical for achieving the best performance for each model, ensuring that each algorithm was 

configured to handle the dataset's specific characteristics effectively. 

 
Table 2: Features and accuracy in driver fatigue detection and classification models 

 
DISCUSSIONS 
 

Fatigued driving remains one of the largest safety risks in ground transportation systems. 

Although previous research studies have advanced fatigue monitoring and driver state detection 

systems, few attempt multiclass classification (Ansari et al., 2022), and even fewer attempts to 

compare the performance of various classification algorithms to detect driver state and fatigue 

(Alshaqaqi et al, 2013). The results of this research study can help identify the important features 

of driver fatigue modeling algorithm development and illustrate the importance of advanced 

statistical modeling techniques for inferring driver fatigue states. The purpose of the current 

research study was to develop real-time fatigue monitoring system that does not implement the use 

of intrusive equipment for data acquisition and can be designed to distinguish multiple severities 

of fatigue.  

Model Validation Approach Hyperparameter values/ 
Algorithm Settings 

Model Accuracy 

Decision Trees 10-Fold Cross Validation Complexity parameter 
(cp) = .01 

0.64 

Random Forest 10-Fold Cross Validation number of trees (ntree) 0.97 
Support Vector Machine 10-Fold Cross Validation Radial basis 

function(kernel), 
Regularization parameter 
(C) = 7.130, Kernel 
Coefficient (gamma) = 
0.0980 

0.89 

Naïve Bayes Classifier 10-Fold Cross Validation Variable Smoothing 0.47 
k-Nearest Neighbor 10-Fold Cross Validation Metric = Manhattan 

Distance, # neighbors = 
3, weights = distance 

0.95 
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Figure 7: Variable importance plot for RF model 

The findings provide significant insights into detecting driver fatigue through a hybrid 

model integrating computer vision, deep learning, and machine learning algorithms. The results 

have demonstrated that combining postural data with behavioral data can effectively identify the 

various driver fatigue levels. Savaş & Becerikli (2018) also found the fatigue detection system 

effective by integrating both types of features. The study has also compared various machine 

learning classification algorithms and revealed that the RF model outperformed others, achieving 

an accuracy of 97%.  The variable importance plot in Figure 7 illustrates the significance of various 

features in predicting driver fatigue using an RF model. The top three variables—right-hand Hand 

Distance, Left left-hand distance, and hand-to-head distance—are the most influential, suggesting 

that the distances between the driver's hands and the steering wheel are critical factors. Ansari et 

al. (2022) also identified that the position of the hands-on steering wheel is one of the key factors 

in determining driver cognitive fatigue. Other significant features include the yaw, roll, and pitch 
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angles, along with their standard deviations, indicating that head movements and their variability 

also play crucial roles. This analysis highlights the importance of both static postural data and 

dynamic movement data in effectively predicting driver fatigue, which is vital for designing 

effective driver monitoring systems in the field of human factors.  

The accuracy and results of the various algorithms show that the driver’s postural behavior 

data combined with features like PERCLOS, MAR, and EAR are effective for differentiating and 

detecting different levels of driver fatigue. Alshaqaqi et al. (2013) found that the drowsy states of 

drivers can be effectively identified using these features related to the eyes and mouth. The current 

study's findings add to a body of evidence from research that seeks to infer driver fatigue states by 

combining and comparing various statistical models and physical features like postural data, 

MARS, and PERCLOS. The algorithms and models in the current research study are designed to 

detect and distinguish four driver fatigue states non-intrusively. Most prior work focuses on 

detecting driver fatigue using intrusive data acquisition techniques and majorly detected only two 

states of fatigue - “high fatigue” vs. “low/no fatigue” (Savas & Becerikli, 2018). 
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Chapter III: Comparing Effects of Environments and 
Warnings on Driver’s Time to Takeover 

 
 

This chapter describes the driving simulator experiment conducted to study the effect of 

different types of fatigue on drivers' takeover performance. Therefore, our experiment includes 

two opposing environments: high workload-induced fatigue and low workload-induced fatigue. 

The experiment requires the driver to continuously monitor and wait for a take-over request (TOR) 

to react and take over the driving from the automated system.  

LITERATURE REVIEW 
 
Fatigue, Automated Driving, and Takeover Performance 

There have been multiple studies relating fatigue and automated driving. Korber et al. 

(2015) found a causal relationship between automation and passive fatigue from the participants’ 

Dundee Stress State Questionnaire (DSSQ). The effects of non-driving related tasks (NDRT) on 

passive fatigue were discussed and evaluated in several studies; however, there are conflicting 

results in the literature. Jarosh et al. (2017) suggested no significant difference in takeover 

performance between a simple monitoring task and a quiz task. On the contrary, Schomig et al. 

(2015) concluded that drivers who do not participate in NDRTs attain the highest levels of 

drowsiness. Because the focus of this study is to assess fatigue levels induced by the environment 

only, our experiment will not include NDRTs.  

The environment, an external factor to the vehicle, poses some unforeseen challenges that 

need further study. Saxby et al. (2013) found that active fatigue reduced the takeover performance 

of the driver when compared to passive fatigue. Their study simulated active fatigue by exposing 

the drivers to frequent wind gusts, which required them to frequently correct the steering wheel to 
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counter the wind and remain within the highway lane. They induced passive fatigue by letting the 

driver sit in fully autonomous mode without interfering with the vehicle (Saxby et al., 2013).  

Feldhütter et al. (2019) conducted a study to determine if long periods of monotonous states 

increase a driver’s fatigue level and if that affects take-over performance. The automated driving 

lasted 60 minutes, and a takeover request (TOR) was issued. One group was allowed to participate 

in NDRTs (alert group) while the other monitored the environment (fatigue group). The study 

found that individual drivers experience different fatigue levels on similar periods of long, 

automated driving. Although results show no significant changes in the take-over time between 

the alert and fatigue groups, the authors suggest future work where the take-over request is given 

once a driver reaches certain fatigue levels (Feldhütter et al., 2019).  

Various authors have developed methods to measure fatigue levels during automated 

driving. Niu & Ma (2022) developed a 3-level fatigue system to determine the driver’s fatigue 

status. Once the system detected the fatigue level, the system sent an auditory signal according to 

the NHTSA guidelines. The beep notifications were classified into low-, medium-, and high-

frequencies (Niu & Ma, 2022). Another study was conducted using eye blink duration and the 

Karolinska Sleepiness Scale (KSS) to determine whether the drowsiness levels of the driver 

significantly increased after 30 minutes of driving. Eyeblink duration and KSS proved highly 

correlated and, thus, a useful system to detect driver drowsiness (Wu et al., 2019).  Another study 

showed that a head-mounted eye tracker would effectively detect eye-blinking activity resulting 

from automated driving (Schmidt, 2017). Our fatigue detection system used four driver fatigue 

levels, which were detected based on the eye aspect ratio, mouth-opening ratio, gaze direction, and 

hands on the steering wheel. 
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Tavakoli et al. (2021) investigated the environmental factors affecting driver fatigue, such 

as weather, traffic density, noise levels, road type, and passengers. They concluded that the average 

driver is more distracted in the city than on the highway. The highway induces monotony as there 

is less movement in the environment. Another study found no significant changes in take-over 

performance in an environment involving a two-car crash vs. no crash ahead of the driver 

(Bourrelly et al., 2019). However, results show a significant influence of high traffic density on 

the take-over time and take-over quality in a highway setting. A more complex traffic scenario 

showed a higher takeover time (Radlmayr et al., 2014).  Tavakoli et al. (2021) also found that gaze 

direction and head movement can change between clear or cloudy weather. The data shows that 

clear weather has higher gaze and head movement, so the driver is more alert. During a different 

study, takeover time (TOT) was slightly longer in the dark than in the daytime. A dark environment 

may evoke the circadian rhythm, leading to higher fatigue levels than in the daytime. There was 

no significant difference in takeover quality between daytime and dark environments (Shi & 

Bengler, 2022). Self-reported surveys indicated driver fatigue increased when the environment 

involved rain (Yu et al., 2016). Rain also increased cognitive workload and affected the takeover 

time during another study (Li et al., 2018). Both studies suggest that higher fatigue levels are, 

among other reasons, due to reduced visibility of mental workload when assessing wet conditions.  

TOR Warning System Design  
During SAE Level 3 vehicle operation, the driver must be prepared to take over when the 

system sends a signal, regardless of the fatigue level. Since automation leads to passive fatigue, 

developing a reliable Takeover Request (TOR) signal is necessary to trigger the driver to take over 

effectively (Korber et al., 2015). Several research papers on multimodal takeover requests have 

been studied (Yun et al., 2020; Huang et al., 2019) and determined a convenient model for the 

TOR signal. Multimodal warning appeared to be more effective. Several studies have evaluated 
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all combinations of Visual (V), Auditory (A), and Tactile (T) warnings and have found that 

redundant multimodal signals decrease response time (Politis et al., 2016; Petermeijer et al., 2017). 

Table 3: Summary of literature review for experimental design investigating warning type 
for take-over performance (V-Visual, A-Audible, H-Haptic) 

Paper Population Type Independent Dependent Warning Type 

(Niu & Ma, 
2022)  

China 
 
Male: 24 
Female: 6 
 
Age Mean: 
25.5 yrs 

Car Racing 
Simulator 

Fatigue Levels 
(3 levels) 
 
Warning 
Signals (Beep) 

Objective Measures 
Gazing Behavior (eye gazing at 
road per minute) 
Braking Behavior (mean brake) 
Average Speed (mean speed) 
Subjective Measures: 
Overall Workload (NASA-
TLX) 
Trust (Questionnaire) 

A 

(Wu et al., 
2019) 

Japan 
 
Male: 60 
Female: 55 
 
Age Mean: 
44.6 yrs  

AIST 
Simulator 

Age 
 
Experimental 
Condition 
(Auto-31 or 
Auto-Manual-
Auto) 
  

Objective Measures 
Time-Steer (turning of steering 
wheel) 
Time-Brake (brake pedal is 
pressed) 
Reaction Time (min Time-Steer 
or Time-Brake) 
steer (Manoeuvrings 
smoothness) 
TTC (time to collision) 
Subjective Measures: 
Karolinska Sleepiness Scale 
(KSS) 
Eyeblink Duration 

A & V 
(multimode) 

(Feldhütter et 
al., 2019) 

Germany 
 
Male: 27 
Female: 15 
 
Age Mean: 
46.0 yrs 

BMW 
Simulator 

Condition 
(Natural Load 
Condition vs 
Underload 
Condition) 
 
Time Intervals 

Objective Measures 
PERCLOS (%) 
Blink Frequency (Count) 
Take Over Time (s) 
Maximum Longitudinal 
Accelerations (m/s^2) 
Maximum Lateral 
Accelerations (m/s^2) 
Minimal time-to-collisions (s) 
Securing Behavior (%) 

A (Double 
Beep) 

(Korber et al., 
2015) 

Germany 
Male: 18 
Female: 2 
Age mean: 
23.3 yrs 

Static 
Driving 
Simulator 

Vigilance Objective Measures 
Vigilance task (Reaction Time) 
Eye Tracking (Blink frequency, 
Blink duration, PERCLOS) 
Mind Wandering (DSSQ) 

A 

(Yun et al., 
2020) 

Korea 
Male: 25 
Female: 16 
Age Mean: 
26.2 yrs 

Full-Scale 
driving 
simulator 

Multimodal 
TOR warning 
design and 
TOR events 

Objective Measures 
Reaction time TOR 
Time to lane change (TTL) 
Vehicle control metrics (SDLP 
and SRR) 
Physiological metrics (SCR and 
AHR) 

Unplanned 
ODD (V, A, 
VA, H, AH, 
VH, VAH) 
Planned ODD 
(VA2, VAH2) 
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Paper Population Type Independent Dependent Warning Type 

(Jarosch et al., 
2017) 

Germany 
Male: 47 
Female: 9 
Age Mean: 
30.10 yrs 

Simulator 
with the 
motion 
system 

Response time 
due to NDR 

Karolinska Sleepiness Scale 
(KSS) 
PERCLOS 
Blink Rate 
Blink Duration 

V 

(Schomig et 
al., 2015) 

Germany 
16 total 
Age Mean: 
30.5 yrs 

Simulator 
with the 
motion 
system 

Drowsiness 
level 

Objective measure: 
Drowsiness Index (Blinking 
duration, eyelid opening level, 
blinking frequency) 

V (Screen) 

(Saxby et al., 
2013) 

USA 
 
Male: 42 
Female:66 
 
Age Mean: 
19.92 yrs 

Static 
Simulator 
driving 

Active and 
Passive 
Fatigue 

Subjective measures: 
Mental workload (NASA-TLX) 
Pre-task and Post task DSSQ, 
Task Load Index (TLX) 
Appraisal for Life Events 
(ALE) 
Coping inventory for Task 
Situations (CITS) 

V (Arrows on 
display) 

Bourrelly et 
al., 2019) 

France 
 
Male: 15 
Female: 15 
 
Age Mean 46 
yrs 

SHERPA 
Simulator 

Time 
 
Traffic 
Condition 
(Critical, Not 
Critical) 

Objective Measures 
Reaction Times 
Car Trajectories 
Subjective Measures 
Drowsiness (Likert Scale) 
Manoeuvre Performance 
Effectiveness of TOR 
Ease-of-use 
Adequacy of 10s time frame 
Safety of take-over manoeuvre. 
Trust Automated System 

V & A 
(multimodal) 

(Huang et al., 
2019) 

USA 
 
16 people 
 
Age Mean: 
22.8 yrs 

Static 
Driving 
Simulator 

Effect of 
Multimodal 
Signal on TOR 

Objective Measures: 
Response time 
Road sign detection accuracy 
Pupil Diameter 
Subjective Measures: 
NASA-TLX 

V, A, T, VA, 
VT, AT, VAT 

(Shi & 
Bengler, 
2022) 

Germany 
 
Male: 21 
Female:15 
 
Age Mean: 
42.3 yrs 

Real Driving 
Setting 

NDRTs (Tetris 
vs Read/Write 
vs Film) 
 
Dark vs 
Daylight 

Objective Measures: 
Take Over Time 
Takeover Quality (min/max 
lateral/longitudinal 
acceleration) 
Time to Collision 
Subjective Measures: 
Flow Experience 

V (HMI Icon) & 
A (Tone) 
 
(Multimodal) 

(Roche et al., 
2019) 

USA 
 
Male: 20 
Female: 20 
 
Age Mean: 27 
yrs 

Simulator NDRT 
Modality 
 
TOR Design 
(A vs AV) 

Objective Measures: 
Take over time 
Time to Collision 
Minimum acceleration 
Lateral position 
Steering wheel angle 
Subjective Measures: 
Workload 

A 
 
AV 
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Paper Population Type Independent Dependent Warning Type 

(Radlmayr et 
al., 2014) 

USA 
 
Male: 38 
Female: 10 
 
Age Mean: 
33.5 yrs 

BMW 5 
simulator 

Group 
(Baseline, n-
back, SuRT) 
 
NDRTs 
 
Traffic 
Situation 

Objective Measures: 
Take over time 
Steering wheel angle 
Brake pedal application 
Longitudinal acceleration 
Time to Collision 
# of collisions 
Tactile Detection Response 
Task (DRT) 
Subjective Measures: 
Complexity (questionnaire) 

A (high-pitched 
tone) & V 
(icon) 
 
(Multimodal)  

(Kuehn et al., 
2017) 

Germany 
 
Male: 38 
Female:22 
 
Age: 20-76 
yrs 

Simulator Secondary 
Task (manual, 
monitored, 
automated + 
secondary 
task) 
 
Take over 
situation 

Objective Measures: 
 
Reaction time 
  

V (red 
hand/steering 
wheel) & A 
 
(multimodal) 

 

Auditory: When comparing auditory TORs and visual-auditory TORs, drivers presented 

with auditory TORs proved faster takeovers and longer time to collisions. Auditory TORs had 

better overall takeover behavior and lower subjective workload (Roche et al., 2019). The NHTSA 

(2016) guidelines dictate that the tone should be 15-30bd louder than the ambient noise but not 

louder than 90 db. Another study by Lin et al. (2009) shows that a 1750 Hz tone will incite a 

quicker reaction. Hence, regarding Yun et al. (2020) and Lin et al. (2009), in our experiment, the 

participants will hear a “beep, beep, beep” sound at 1750 Hz with a tone interval of 30ms.  

Visual: Visual cues require visual attention. Visual signs are not useful, but augmented 

with other modal signals improve steering and braking performance (Bazilinskyy et al., 2017). 

During a study, a visual-only signal was compared to a bi-modal Visual-Auditory signal system 

during automated driving (Praetorius, 2020). The results showed higher effectiveness through 

shorter reaction times for the Visual-Auditory takeover requests. A screen in the center console 

flashed a signal to the driver to place hands on the steering wheel. The audio was a one-second 
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1000 Hz sinus tone. Bazilinsky et al. (2017) and NHTSA’s report on human factor guidance shows 

that red, orange, and yellow visual signals elicit quicker drivers' reactions. Furthermore, Politis et 

al. (2016) found that a simple design like a circular icon has maximum effect. Because of our 

simulator’s limitations, we will be using a white, squared icon flashing on the bottom left of the 

screen.  

Tactile: The findings of Yun et al. (2020) show that haptic modality can elicit more 

immediate TOR, whereas auditory modality can elicit more stable TOR. Additionally, Spence et 

al. (2008) found that haptic feedback improves response time, increases attention, and enhances 

situational awareness. Based on the study conducted by Huang et al. (2020), warning cues with 

tactile signals yielded faster takeover times. Petermeijuer et al. (2017) looked into drivers’ reaction 

time, availability, and pleasantness concerning tactile modality in the event of a take-over request 

in autonomous vehicles. They found that alerting via both tactile and auditory modalities was more 

effective than solely based on tactile modality. We developed a bi-modal TOR Warning System 

based on the literature to compare the known effects (Table 4).  

 
Table 4: TOR warning system 

 Auditory Visual 

TOR Warning 
System Design 

- Beep  
- 1750 Hz tone  
- < 90db  
- Interval: 30 ms 

- Square white icon 
- Bottom left of the 

frontal screen 

Table 5: Environmental factors used in takeover performance studies. 

Times  Environment  Findings  

(Shi & Bengler, 2022)  A sudden vehicle in front of the car  
Daylight  
Dark hours  

TOT longer for Dark Hours  
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(Radlmayr et al., 2014)  Four traffic scenarios  
A sudden car crash with flashing warning lights (Dangerous 
situation)  
1. Obstacles in middle lane, left and right lane have traffic  
2. Obstacle in right lane, no other vehicles present  
3. Obstacle in left lane, no other vehicles present  
4. Obstacle in middle lane, no other vehicles present  

Complexity Affects Take over 
quality and time. #1 showed 
higher levels of criticality.   

(Kuehn et al., 2017)  Five critical scenarios  
1. Change lane or exit highway, no traffic  
2. No road markings, vehicle in front travelling same 

speed, sudden brake, moderate traffic  
3. Sensor failure, vehicle in front travelling same speed, 

sudden brake, moderate traffic  
4. Roadworks, high traffic density, stationary vehicle 

appear  
5. Extreme weather conditions, sudden heavy rain, vehicle 

in front travelling same speed, sudden brake, moderate 
traffic  

   

(Zhang et al., 2022)  Two way two lane road- three scenarios:  
1- Straight bush  
2- Semi open Chevron shaped bush  
3- Zig-Zag shaped Chevron bush  
These are divided into two heights - 1.5m (1) and 0.5m(2 and 
3)  

Semi open chevron landscape 
induces better alertness in drivers.  
   

(Tavakoli et al., 2021)  3 Different Environments:  
Four different types of roads (City, Country, 2 lanes on each 
side and 3 lanes on each side)  
Weather (Clear,Cloudy and Rainy)  
Front Passenger (Passenger/no passenger)  

Clear weather has higher gaze and 
head movement.  
Average driver is more distracted 
in city driving.  

(Guo et al., 2022)  Four types of landscapes-  
1.   Enclosed space landscape  
2.   Semi Closed space landscape  
3.   Semi Open space landscape  
4.   Open space landscape.   

Drivers attention was more 
focussed in enclosed landscape.  

   
Measuring Takeover Performance 

Simply giving a signal alert to the driver does not imply a well-performed takeover 

maneuver. According to Pipkorn et al. (2024), drivers may look away from the road during 

automated driving in favor of tasks unrelated to driving. However, when a change in control is 

necessary, drivers could do so without being aware of the traffic situation or a potential threat. 

Therefore, we must establish guidelines for measuring take-over performance in this experiment. 

Multiple studies have developed systems to measure take-over performance or how well a 

driver can resume control over the vehicle when required. Takeover performance can be 

adequately measured in metrics such as Gaze Reaction Time and Takeover Time; however, these 
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characteristics depend on factors such as Time Budget and Traffic Density (Gold, 2016). The 

definition of taking control can be broken down into four different reactions: orientation, readiness, 

action, and stabilization. Readiness to act is described as coming in contact with the system, which 

can be measured by taking overtime or time to take over (Schomig et al., 2015). In our experiment, 

we will use readiness to measure takeover performance. The TOT will begin when the TOR is 

issued and end when the driver places his or her foot on the brake pedal. The literature review is 

summarized in Table 3, and the environmental factors used in the literature are presented in Table 

5. 

METHOD 
 
Driving Simulator Experiment  

 Research suggests that the environment will affect the takeover time, as observed by 

Zhang et al. (2022). Specifically, takeover time will increase in a high workload-induced fatigue 

environment. The objective is to assess if the environment (high workload-induced fatigue vs. low 

workload-induced fatigue) affects the driver’s takeover performance after a takeover request is 

issued in SAE Level 3 vehicles. 

A half-factorial experimental design assessed the response time after the takeover request 

signal in high workload versus low workload scenarios. The response time will depend on the 

fatigue levels and the environment. To assess the effect of fatigue on driver’s performance, the 

experiment was run for 45 minutes. According to Reinermann et al. (2008), the brain showed a 

decline in cerebral blood flow (CBFV), which indicates a loss of alertness after 36 minutes of 

monotonous driving. Participants in the test run are healthy adults with no history of sleep 

disorders or psychological conditions that might affect the study. Before the experiment began, the 

moderator ran through the simulator control setup and ensured the participant was comfortable. 
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Each participant was randomly assigned one of the environments. The participants encountered a 

TOR signal at minute 15 (control measurement) and minute 45. The moderator checked on the 

well-being of the participants every 15 minutes throughout the experiment. The timeline is shown 

in Figure 17.  

Independent Variable  
There are two independent variables—workload type and fatigue level (moderating 

variable type). Participants’ fatigue level and takeover response time will be recorded after the 

TOR signal (Table 3) is played. The workload type and TOR warning system are the between-

subjects factors, and the fatigue level is the within-subjects factor.   

Dependent Variable 
Response Time: The timer starts as soon as the beep (auditory signal) starts, and it stops 

when the driver puts his or her foot on the brake pedal. The brake coefficient will be measured, 

and the driver's response time, i.e., the time between the beep start and pedal press, will be recorded 

and logged. 

 
Figure 8: Timeline for Experiment Procedure. The experiment will stop every 15 mins to 

check on participants’ well-being. 

Apparatus 
This project used RealTime Technology’s RDS-1000 motion-based driving simulator. This 

high-fidelity simulator features a quarter-cab design. Three 65-inch displays display a virtual 

environment. The simulator comes equipped with SimCreator and SimCreatorDX and a driver 

automation system. 
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Environment 
An open landscape with long, tangent sections on a four-lane divided highway with a speed 

limit of 70 mph was used to develop the driving simulation environment. Research shows that 

reaction time for straight roads is significantly longer during an open landscape scenario, possibly 

due to the drivers’ frequent gaze behavior (Guo et al., 2019). The region next to the shoulder was 

covered with green vegetation. According to the findings of Yao et al. (2020), the color green gives 

a pleasant viewing experience for drivers and reduces visual fatigue. The urban terrain remained 

flat, and asphalt was used for the road surface. We designed a two-environment system to compare 

the effects of the environment on the drivers' takeover performance. These environments and their 

salient features are described below:  

Environment 1 (low workload-induced fatigue)  
The first environment had an open, clear, blue sky. It was during the daytime, and there 

was high visibility. There was light traffic volume (trucks and cars).  

Environment 2 (high workload-induced fatigue) 
The second environment had rain and a cloudy sky. It was nighttime, and visibility was 

reduced. There was heavy vehicle traffic (trucks and cars). 

TOR Scenario 
The subjects were in a car in full autonomy mode at 70mph. During this simulation, the 

driver sat back and maintained awareness of the environment while experiencing various fatigue 

levels. At minute 15:00, a lead car started to slow down until it came to a complete stop. The TOR 

signal was issued, and the driver was asked to avoid a collision. The time to collision was 6 seconds 

(Eriksson & Stanton, 2017). The lead car sped up after 6 seconds. The experiment resumed. At 

minute 45:00, a lead car started to slow down until it completely stopped. The TOR signal was 

issued, and the driver was asked to avoid a collision. The time to collision was 6 seconds (Eriksson 

& Stanton, 2017).  



 
 

 

38 
 

RESULTS AND DISCUSSIONS 
 

The paper aimed to compare the effects of two workloads on the driver’s performance 

while driving a vehicle equipped with SAE level 3 automated driving. A combination of visual 

and auditory warning signals to warn the drivers of the impending collision. Participants were 

asked to respond to the obstruction as best as their decision suggested. The results indicate that the 

environment-related workload affected the driver’s reaction times.    

Eight subjects aged 20-28 (five male and three female) participated in the experiment. 

None of the participants indicated infractions within the past five years. They all said they drove 

between 0-2 times/day with a total drive time of 30-45 mins/day. The participants sometimes drive 

when they are tired and often drive at night. On average, the participants felt neutral towards the 

usage of an automated system in vehicles and its ability to help drivers quickly respond to unsafe 

driving conditions. However, they mainly agreed when asked if such a system could help prevent 

accidents. 

Twelve 12 readings were gathered from the study. When analyzing the video footage of 

the drivers:50% of the subjects kept their hands on the steering wheel at all times 75% of the 

subjects avoided the collision by either swerving (45%) or braking (55%). These results indicate 

that drivers’ reactions differ and are unpredictable. About a quarter (25%) of the subjects collided 

with the obstacle by either reacting too late or not reacting at all. After the experiment, these 

participants indicated they had high trust in the safety system of the simulated vehicle and thought 

the system would avoid the collision. Over half (58%) of the total subjects reacted before the TOR 

warning signal. Out of these subjects, 42% saw the obstacle beforehand, started braking before the 

TOR signals were issued, and were driving in the daytime. This perception-reaction shows that the 
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environment affects the spatial awareness of the participant as it affects their response time and 

response reaction.  

Among all subjects, 33% moved their legs but did not press the brakes when the obstacle 

appeared. This shows that participants were confident in their driving skills to maneuver around 

the obstacle rather than panic and stop. Finally, 50% of the participants did not go through the 

entire experiment as they experienced simulation sickness (According to the Questionnaire).  

At the end of the experiment, each participant was provided with a self-reporting 

questionnaire, the Situational Awareness Rating Technique (SART). The participants were asked 

to rate dimensions on a scale of 1 (least) to 7 (highest). The average SART score was 3, which 

indicates that the participants' awareness level was very low after the experiment.    

Findings and Limitations 
In our experiment, the TOT started when the TOR (A-V) was issued and ended when the 

driver reacted; however, 58% of the readings showed that the participants had started their reaction 

before the TOR (A-V) warning signal because they had already been alerted by the jerking motion. 

The vehicle simulator was programmed to stop or slow down if it encountered an obstacle. During 

the experiments, the simulator would detect the vehicle in front of it and attempt to slow down to 

avoid collision. During this time, the simulator would jerk. When the simulator realized it could 

not control the situation, it gave the driver the TOR (A-V) so the driver could perform the necessary 

steps to take over safely. The jerk right before the TOR might have affected the drivers’ reaction 

to the TOR (A-V). In other words, by the time the TOR (A-V) was given, the jerk had already 

alerted the driver.  

The results from the simulator must be used with caution when making general statements 

in real driving. For further studies, we suggest developing a warning system with a tactile signal 

and another without a tactile signal and comparing its effects with various fatigue levels. Because 
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different drivers react differently to the same scenario, takeover times need to have multiple 

measurements. 
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Chapter IV: Conclusions and Recommendations 
 

The study's results suggest that postural data metrics combined with measures like 

PERCLOS, EAR, and MAR are most promising for detecting and classifying driver fatigue. These 

outcomes can be utilized for both technology development and the study of fatigue monitoring 

algorithms. The development of driver fatigue warning systems can leverage the results of this 

study to detect and distinguish between driver fatigue levels. A major shortcoming of the study is 

that it relies upon computer-vision techniques for extracting data from the recorded video data of 

the driver. It may have inferior performance in low-lighting conditions or cases where a driver 

wears sunglasses or a facemask limiting the approach to extract feature measures like MAR and 

EAR. This is a noteworthy limitation, as this limits the use of this approach during night-time 

driving. The data for the study was collected in a simulator-based environment. Although the data 

for this study was collected in a realistic environment, several studies have observed differences 

in physical and behavioral measures between simulators and naturalistic environments (Engström, 

Johansson, & Östlund, 2005). One of the other limitations of this research study is that it did not 

implement any experimental design for the systematic collection of data to study the effects of 

different factors on the different states of driver fatigue. These limitations can be addressed by 

subsequent naturalistic studies implementing an experimental design for data collection with 

varied driving scenarios. 

A driving simulator experiment was conducted to study the effect of different types of 

fatigue on driver takeover performance. Results indicated differences between takeover responses, 

although a rigorous analysis could not be completed due to many participants experiencing 

simulator sickness and not completing the experiment. Future research should further validate the 

performance of Random Forest models in estimating driver fatigue using driver features like mouth 
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aspect ratio (MAR), eye aspect ratio (EAR), and postural data of the driver (head-to-headrest 

distance and hand-to-steering wheel distance). Also, additional research is needed to study the 

interaction between driving environment, driver fatigue, warning modality, and driver response to 

takeover requests. 
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Appendix B: Technology Transfer 
An Appendix should be included in this final report to document the Technology Transfer 
activities conducted during the project term, accomplishments towards T2 adoption and 
implementation by relevant stakehold  ers, as well as any relevant post-project T2 plans.  

 
Title Conference/Audience  Delivery 
Driver Fatigue in Prolonged 
Automated Driving: 
Research Gaps and Future 
Directions 

Proceedings of the IISE 
Annual Conference & 
Expo, 2023 

Conference meeting  

Identification of driver 
fatigue through 
physiological measures 

Undergrad and graduate 
students in Industrial 
Engineering at UTA 

Class lecture 

Meeting with Stakeholders  City of Arlington, City of 
Madison, Association of 
Unmanned Vehicle 
Systems International  

Virtual meeting 

Classification of Driver 
Fatigue for Prolonged 
Automated Driving 

TRB Annual Meeting, 
2025 

Conference meeting  
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